

MEDIZINISCHE FAKULTÄT

Universitätsklinikum Erlangen

Dependence of Biexponential IVIM Parameters on the Number of Slices in the Liver

spacing between slices

 Many slices: 24 – 27 slices (covering the whole liver) in transversal orientation; 1 mm spacing between slices

Evaluation

- Region of interest (ROI) was drawn in the liver parenchyma of the right liver lobe for each slice separately — Computation of the median signal of the included voxels
- Biexponential IVIM function was fitted to the median signals from the ROIs (normalised to the signal at b = 0) in order to obtain one set of IVIM parameters for each slice
 Assessment of (non) normality of IVIM parameters with Shapiro-Wilk test
 Accordingly, the unpaired t-test (normality) and Mann-Whitney U test (non normality) were applied to assess statistical significance between measurements

Martin Loh^{1*}, Tobit Führes¹, Bernhard Hensel², Michael Uder¹, and Frederik Laun¹

¹ Radiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland.

² Zentrum für Medizinische Physik und Technik, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland.

* Martin Loh, Universitätsklinikum Erlangen, Maximiliansplatz 3, 91054 Erlangen, Deutschland, martin.loh@extern.uk-erlangen.de

Introduction & Motivation

Intravoxel Incoherent Motion (IVIM)

- Method in diffusion-weighted imaging (DWI)
- Considering both tissue diffusivity and blood perfusion

Results

No statistical significance observed for all three parameters ($p_D = 0.09, p_f = 0.09, p_{D^*} = 0.5$) Table 1: Median $D \left[\mu m^2/ms\right]$ D^{*} [µm²/s] Slice Setting *f* [%] **IVIM** parameters for the few slice **Few Slices** 38 1.02 22.4 and the many 55 Many Slices 1.10 21.7 slice setting 1.8 40 ^{1.6} [su/₂un/_{1.2} 1.2 35 30 S 25 20 1.0

- Diffusion-weighting factor b, signal S₀ at b = 0, diffusion coefficient D, pseudodiffusion coefficient D* and perfusion fraction f
- IVIVIM allows separation of signal into these two compartments
- IM studies are performed with varying acquisition parameters —> Question: Are results comparable?
- Here: Investigation of saturation effects on flowing spins that might occur¹
- Comparison of data acquisition with few slices and with many slices
- Idea: Measurement with few slices reduces potential saturation effects
- f might be affected most —> decrease of f expected for Discussion & Conclusion many slices
 Saturation effects only play a

Materials & Methods

Volunteer Study

• 9 healthy volunteers (2 female, 7 male, age: 21 – 30

Figure 1: Boxplots of the IVIM parameters for measurements of 4 slices ('few slices') and the many slice setting in transversal orientation ('many slices'). Data points are shown in blue, outliers are marked as red '+'signs. The red line marks the respective median, the box indicates the interquartile range (IQR) and whiskers indicate all data lying within 1.5 x IQR.

- Saturation effects only play a minor role in IVIM of the liver, which are commonly performed with a similar TR²
- Slight decrease of f in the many slice setting, but not significant
- Blood flow is too fast for blood to get saturated
- Comparison of IVIM parameters with different slice

years)

Acquisition Parameters

- Field strength: 3T
- Magnetom Prisma, Siemens Healthcare
- TE = 60 ms, TR = 3600 ms
- Slice thickness = 5 mm
- Two sets of b-values (16 and 20 b-values, respectively) ranging from 0 s/mm² to 800 s/mm² were used
- Three orthogonal diffusion directions for every b-value

<u>Measurements</u>

- Divided into two parts: Few and many slices
- Few slices: 4 slices in transversal orientation; 25 mm

settings should be **possible** (at least for TR in the same order of 3600 ms)

References

 Friedli JL, Cynthia BP. Evaluation of variable-angle uniform signal excitation, tilted optimized nonsaturating excitation, and flat radiofrequency pulses in free-breathing non-contrast-enhanced pulmonary MR angiography. Radiology. 1997;202(3):863-867
 Riexinger A, Martin J, Wetscherek A, Kuder TA, Uder M, Hensel B, Laun FB. An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver. Magnetic resonance in medicine. 2021;85(4):2095-2108